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INTRODUCTION

This report is concerned with the absorption of radiation at optical wavelengths ip
a plasma aerosol ([1]-[3]). We shall take this to include wavelengths from 3 cm to 0.3 p.
The term aerosol refers to a gas-particle mixture such as that found in the atmosphere.
Furthermore, the plasma is assumed to be of the type achieved by laser-induced air
breakdown described in {1] and [3]. A number of conclusions may be reached just by an
examination of the absorption mean free path [, (the path length necessary for the inten-
sity of the impinging radiation, e.g.. a laser beam. to fall to 1°e of its value).” More
detailed information, such as the potential consequences of the dissipation of absorbed
energy, depends on specifying explicitly the geometry (for both the beam and the
plasma), characteristic times, and the mechanismns of plasina containment/maintenance.

ABSORPTION BEHAVIOR

For both historical and practical reasons there exists a plethora of formulae for the
absorption coeflicient .. The various derivations may be roughly classified into three
categories. those using the V6asov transport equation (classical). those using classical
biemsstrahlung coupled with the principle of detailed balancing (semiclassical), and
quantum mechanical. In all except the least rigorous derivations, these techniques result
i expressions involving unpleasant integrals. Consequently, approximations are made
which result in a large set of formulae, each valid under particular conditions appropri-
ate to s dervation. The appendix of this report contalus an extensive summary of
those which are pertinent to the present study.

It can be seen from those equations that the temperature dependence of 15 quite
complex Nevertheless, i considering an aerosol plasma. we shall find ourselves able to
preh o nomnnal temperature on o which to buase our conclusions We first note that
heewuse of the exponential dependence of the electron partial pressure on temperature in
equations (A-22) and (A-30). there s a steep rise i absorption Just prior to complete sin-

gle Jon1zaggn For atmospheric pressure this occurs at about T 15 eV or
17500 "X At that point the electron pressure is about one-half the total pressure.
and g s gven by (A-19) with Z I. It can be seen from that equation that g

decreases with a further merease of temperature. This holds true untl about 25,000 “K.
when donble qomization begins 1o dominate, and g begins 1o nse again (1. p 243)
Further computations require the entire set of equations (A-21), (A-22), (A-27). and (A-
23 untl the double 1omization s close to complete, at which point (A-19) 1s agam a good
approximation but with 72 2. As the temperature rises. this procedure repeats itself.
and g passes through a series of maxima and minima. The ratios of adjacent maxima to
mimma are only on the order of two (cf.. 1", p 243) so that it is not unreasonable to
exannne only the maximum values. Also, as noted above, temperatures below 1onization
tas be dismissed as having wsigmficant absorption. Finally, at or near breakdown for
acrosol plasmas the temperature 1s 1 the range of 1 to 2 eV (13}, p 966), so that as a

P That i 10 GHz w10 GHz o 40 % 105 eV 1o 40 eV
ttd b g, whete gt s the absoption coeflicrent
PEY S e quat i A 26 B Lager pressures it ahcreases for example at p

atm 100. total 1oni-
Pt cacur oat abent T IN.000 K




general guide to absorption we may assume that there is complete single ionization; i.e.,
we take T = 17,500 °K and Z = 1.

Let us now compute w, and U, in order to determine which approximations are
valid. The ion density is given by

1.013 x 108
I Patm o 17
n_ = = =210 x 10" p,,,.. (1)
kT 2(1.38x 107%) (1.75 x 10Y) o

Then, at 1 atm

wp = (4me* 2.10 x 107 /m)! % = 2,58 x 10" sec !,

—
[
—

This is equivalent to a wavelength of

2R (20 « 1010
N 6.28 (3.0x 10 — 73410 %m. (3)

’ 258 x 1013
Also, from (A-9) we have

1/2
ar [ 2x e! (2.10 x 10'7) '

vy = — | =— - - g sec
3] 3 (k 1.75 x 109%/%/m
= (6.0x 10"y g sec'l. ()
Thus, « > v, corresponds to X <72 27c vy =~ 0.3 cm or freq - - 100 GHz.

Note that for wavelengths greater than 0.01 cm (ie.. frequencies hbelow 3000 GHz)
there is total reflection of impinging radiation. Furthermore, since i, << w. we see
that for frequencies much greater than 3000 GHz conditions (ii) and (iii) of the Appendix
are both satisfied. Finally, down to wavelengths of about 3.0 x 10°* cm. condition (V') is
also valid. (More precisely. hw << kT for X - - 82x10°cm 082 p, and hw - - |,
for X >> 85x10%cm == 0.085 1) In the region from 3x 10 *em to 3x 104 cm we use
the Kramers-Unsold formula (A-30b), which is justified since hw << 1;. At longer
wavelengths (i) is valid, and we can use the simpler equation (A-19¢), which hecomes

n. = 38X ]05 g P:«\th >‘2 (

W
—

To evaluate the Gaunt factor g, we first determine A,. From (A-3)

Ac - 38x10°\ . (6)




The low-frequency region occurs for X >> 2.6 x 107%m, which we arbitrarily set at
XA > 3x 103 cm; the remainder of our spectrum, 3x 103cm to 3 x 107 ¢m, falls in a
region for which we have no simple formula for g (or &yw) ).

Figure 1 contains a plot of [, versus wavelength. In the figure, we have marked the
region where the Kramers-Unsold formula was used, and the factor £yw) was simply set
equal to two. This matches the valye obtained by (5) at A = 107 cm, a choice of &, that
differs slightly from [1], page 242." Observe the leveling of the curve at \ equal to
2x10° cm. At even smaller wavelengths (which happen to be outside our region of con-
cern) it has a sawtooth shape, alternately increasing and decreasing ([4], p 274). The
high- and low-frequency regions used to compute g in equation (5) are also noted in the
figure. We have used the table in [4], page 255, to compute g in the high-frequency
region. It is only tabulated down to hw/kT =0.1; ie.. up to A =8x10* cm.'" From
this wavelength up to the low-frequency region, g was set equal to 2.0, the bottom entry
in the table. This procedure seems to have produced a good interpolation between the
two regions, at least on the log-log plot. Even though the table and (A-3) include the
frequency dependence of g, the slope of the curve in the figure is essentially a constant
within the range of equation (5). The accuracy is, of course, not very good close to the
plasma wavelength A, = 7 x 103 em.

Finally, if we approximate (5) by setting g = 2.0 (a reasonable value for the optical
region), we obtain the particularly simple formula

105
I, = 8x107 [em], (7)

9 )
Patm A

which is essentially the same as that in 3. Note that if the impinging beam is not
parallet (e.g., a focused laser). the beam divergence should be taken into account in com-
puting absorption distance.

CONCLUSION

We have seen that at atmospheric pressure, there is significant absorption only at
wavelengths above 3 x 107 em = 3 4. (Also, the medium 1s essentially a total reflector
for X > 10%em - 100 1) One obvious way to extend this range 1s to increase the
plasma pressure. According to 3, for short periods of time during breakdown the pres-
sure at a breakdown site may be as high as 100 atm. Whether it is feasible to maintain
a pressure of this magnitude over longer periods and throughout the plasma depends on
the details of the plasma maintenance and containment. (Most treatments of the

maintenance of a laser-induced air plasma assume close to atmospheric pressure; c.f., 2],
5

t Raizer sets g = 25 for a CO, laser (A = 10°cm). and he sets £ = 07 for a neodymium laser
(A 2= 10*cm)} He also includes an "edge” factorof 1 2t0 15

tt For X\ smaller than the low-frequency region, that 1s, for X from 3x 10®em to 3x 102 cm,
hw/kT ranges from 27 to 0 027
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Figure 1a. Plot of absoiption mean free path lwversus the wavelength A. The
Kramers-Unsold approximation is given by e — e , equation (5), with the
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Figure 1b. Plot of absorption mean free path ﬂw versus the wavelength A The curve
was computed from equation (5) with the mid-frequency g (set to 2 0) indicated by the
dashes, and the low-frequency approximation (A 3a) for g shown by the solid hine
Total reflection occurs for A below 7 x 103 ¢cm.




NOTATION

¢ = 2.998 10" cm/sec (speed of light)
e = 4.803 107!% esu (charge of electron)
g, 8, 8p, etc. = Gaunt factor (cf. equation (A-3) )
g™ = statistical weight of ground state of ion of charge m
f = 6.626 1077 /2x erg-sec (Planck’s constant/2r)
= 1.055 10°% erg-sec
[ = ionization potential of plasma atoms
= Z°1y, where Iy is that of a hydrogen atom
k = 1.380 107!® joule/ °K (Boltzmann’s constant)
I, == absorption mean free path ( = 1/p,)
m = 9.109 107 grams (electron rest mass)
n_ = number density of electrons
n,, = number density of ions of charge m
Note that Z = m + 1
n = total number density of ions
n, == number density of ions when ionization is total
(i.e., assuming all ions have the same charge)
Patm = Pressure in atmospheres
p = pressure |[dynes/cm?]
= 1.013 10° x pym
T == temperature, °K
u!™ = partition function for m*" jon, normalized by the ground state energy
X_ = p_/p. where p_ is electron partial pressure
Z == charge of nucleus for hydrogen-like atom
v == 1.781 (In(5) = Euler's constant)
A = wavelength in ¢m
u,, = total absorption coefficient for monochromatic radiation
of frequency w
v, = effective collision frequency (for momentum change)
v, = velocity-independent approximation of v,
w == {requency, radians/sec = 2 frequency
Note that w [sec”!] = 1.518 10" x (hw),,
w, = plasma frequency in radians/sec
= (4me’n_/m)1/?

h




APPENDIX: ABSORPTION COEFFICIENT FORMULAE

FREE-FREE TRANSITIONS

One of the more uselul expressions, from a viewpoint of generality and computalal-
ity, tor the absorption coeflicient of a plasma is ([4!, p 259-260)

po = k(1 - eMkT) eyt PA-1)
where
167° | 2x L 1 %% n
Ko oo — - Ty T8 (A-2)
3 3 (mkT) = mehoor

and g is v so-called Gaunt factor given by (17 p 235, 6 p IRR-401, T equation (3-58))

~

v...'i In A for T (8.9 x l():’) 77 and Ao 1 (A 3w
g - O(1) for T <2 (89x10°) 2% and A =1 {A-3h)
@ln Ag for T = (8.9 x 10'5) A (A 3c)

'

where {ef equutions (A-11) and (A-12) )

RIS TR AR AR
A 2 (2K L 301 x 108 A

~ eV YA
Ao ‘%1 dopy ot L

e R

The notunion Of1) s 1o he mterpreted as “of the order 1.7

Fguations (A-1) and (A-2) are derved in 1 semachassieallv: e J)l't‘lll.\\(l‘illlhlll}.{
radiation for an electron i a coulomb potential s computed classicallv. the coeflicient
ndeduced Trom an application of the principle of detailed balancing plus Planck’s for-
mula for radimtive equilibrium. and the Tactor mn (A-1) added to correet for stimulated
cnnssten The assumptions used i the dervation are

[ Free-free transitions are the domimant absorption mechansm
(n) w - wy, where w s the plasma frequency.

() w -y, where v s the transport colhsion frequency.

P Gannt faoter whichs ot derved e 1 v 1 s discnsed beloow
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(iv) hw << kT.

Note, there is not a simple expression for g which is accurate in the crossover region
Ac~=1.

Condition (i) is tantamount to ignoring energy absorbed in photoionization of the
atoms or ions (bound-free transitions). It is intuitively clear that a necessary condition
for this approximation is that the photon energy hiw be small in comparison with I, the
ionization potential of the atoms. Furthermore, it can be shown ([4] p 271-272) that,
since under these conditions photons are only absorbed by hlghly excited atoms, the
ratio of the contribution from bound-free transitions to free-free is e"“/¥T_1 ({4] p 271-
272). Thus, a sufficient condition for (i) is

('a) Thw<<l (A-4)
('b)  hw <<kT. (A-5)

Under these circumstances (A-1) reduces to

167° [ 2 e®Z%n n
_ L A-6
[ ] o(mkT)3 3.2 (4-6)

which is equation (6.1) of 1] (often referred to as Kramers formula). On the other hand,
il hw 2> kT, the semiclassical treatment of free-free transitions and even the (quantum)
approximation (A-3c) lose their validity; moreover, in that case bound-free absorption
dominates (4] p 272).

Condition (i) plays two roles in the derivation of (A-2). The first. which is rela-
tively transparent, is that it insures that the index of refraction is close to one (cf. p.
28, 16]). The application of this assumption in the derivation is fairly clear. It enters
into the energy balancing computation via the relationship between the energy flux and
energy density ([1] p 28), which assumes that the speed of energy propagation is equal to
the speed of light in a vacuum. (Compare {6], equations (12.17) - (12.18), where ¢ is
replaced by the group velocity and n is not one.) Classically, for w < w, there is total
reflection. Formulae for the absorption coeflicient when w is in the neighborhood of .,
may be found in (8], (9], [1] p 308, and [6] p 66-68. The less obvious role for condition
(i) relates to Debye shielding. Formulae (5.8) and (5.9) of [4] are obtained by integrating
over the impact parameter b for electron scattering with an upper limit of infinity. /This
is equivalent to ignoring the shielding, and it is valid provided w >> w, (see {lO]).T We
note that [8] includes shielding effects in the transport equation, but only gets simple
expressions for the cases w > w, and w << w,.

t Heuristically, we note that contributions at large b only affect frequencies w < vo/b (where vy =
initial electron velocity). If we take the cutoff to be the Debye length Ap, then the error produced
by extending our integration to values of b larger than \p is negligible at those frequencies satisfy-
g w >> vo/Ap = (kT/m)"%/\p = w,
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Inequality (iii) expresses conditions under which the correlation of successive colli-
sions of an electron with ions and its attendant interference of bremsstrahlung radiation
may be ignored ([4] p 258; The quantity v, is the collision frequency for the momen-
tum change; ie.,, the mean' change in momentum per unit time due to collisions is my,v
([1],{6]). In general v, is a function of speed v (cf., [6] p 51-52); however, for the pur-
poses of (ili) we may use the expression (A-9). When w is of the order of v, an
appropriate formula is (A-7), which includes the effects of correlated collisions; this
reduces to the simpler expression (A-8) provided v, is essentially a constant over the
range of velocities which are significant in the integral.

(iv) The derivation of (A-3a) and (A-3b) involves two integrations. The expression
for bremsstrahlung is obtained by an integration over the electron’s impact parameter
11'. balancing leads to an absorption coeflicient which is a function of electron initial
velocity vo, and this expression is integrated over the Maxwell distribution to obtain k.
The bremsstrahlung formula is simplified via two approximations, one at low frequencies
(1 equation (5.9)) and one at high frequencies (4 equation (5.8)). Upon balancing and
integration over vq (cf. i6!). these two approximations lead to (A-3a) and to g = 1,
respectively. However. the conditions of approximation are velocity dependent, so that
one must show that the contribution to the integration over vq outside the region of
approximation s msignificant. Oster 10 does this for low frequencies and shows that

the condition for validity is A¢ - - 1. Ginsberg (6 p 189) seems to feel that the pro-
cedure 15 justified in both cases. (Actually, 4 only treats the high-frequency case, which
leads to the Kramers formula (A-2) with g - 1.) We note that even if we accept the

value g = 1 in the high-frequency region where A << 1 (but still requiring hw << 1, of
course), there is still a gap for frequencies where A = 1. A rough table of Gaunt factors
appears in 4., p 255. The two other approximations, involving T, separate the classical
region from that in which a quantum-mechanical derivation is necessary. Quantum-
mechanical effects  become mmportant where the (correspondence principle) quantum
nnnimnm impact parameter h mvy approaches the classical minimum impact parameter
7o vy (cf. 9). In the quantum-mechanical treatment, the impact parameter does
not appear expheitly: however. the results for a single electron interaction do have to be
integrated over the velocity vy The result may be approximated by the simple expres-
stion (A-3¢) under the condition A, - - Vo dciie. T - 5x10°7° 10 Oster 10 also
shows that at low frequencies (1.e., A¢ -1} the general quantum-mechanical expression
reduces to the classical formula (A-3a) under the reverse mequality T - 5x 10> 727
Both these approximations also involve the condition b~ KT The region i which a
classical approach is permissible may also be obtamed Inurlstu.\ll\ by subsfjtuting an
average veloaity - vy - o (KT m)' “in the relation Ze® mvé - h mvy  Observe
that in (A-3) we have interpolated over the crossover region: 1 e, set the switching point
at A¢ = Ag, which gives T 89« 10° 722 Oster seems to feel that this interpolation s
Justified.

1 By which 1= meant an average cver the unpact parameter with a haed imitial velooty of the elec
trom
tt An examination of the dervation of (A-30) imdicates that a natural chowe far vy s

(2kT. ym) 210! This leads te the mequality T - - 2 & x 10°
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EXPRESSIONS FOR v,, AND g

A classical treatment of the problem utilizing the transport equations yields ([1] p
42, [6] p 51-52)

o0 P

M, = - 47r62‘,fum qu' - v3-6—(c,'>v'?')(lvT : (A-7)
3mew® o Wity Ov

which is valid under the condition (i'). The factor w?/(w? + v,2) reflects the effects of
correlated collisions ([1] p 29-34, [4] 257); i.e., condition (iii) is no longer necessary. If
vy, may be treated as a constant i, t,hen (A 7) can be integrated by parts to yield 'l
ire’n. b
e, = B m, 2 (\-8)
me WPy ot

Alternati\ely we may define v, as that value for which (A-8) holds in the limit
Trm Applying this deﬁnmon to (A-7) with ¢ the Maxwell distribution yields (6 p
5" 53 and p 490)

/2 5o 4
 dnf 2n Z%'n,
”':—[—] T © .

Dropping .2 in the denominator of (A-8) and substituting (A-9) in that equation. we
arrive at (A-6).

The precise expression for g bears some discussion. In elementary treatments (cf.
1) and [4)) it is simply unity. A very coarse analysis, employing only average quantities,
may be performed as follows: Let V:(kT/m)l/‘z be the average electron speed. let 1.
the coulomb radius, be the minimum radius to which an electron of average energy can
approach and still escape capture; i.e., Ze*/r, == mv-'2 . kT 2. Finally. let the coulomb
cross section be o, = 72 and i, = n,¥o,.. It then follows that

e
dmn, 7!

Vy = ————a——
TRT WV
le.,
ga = 3(3/2m)'F — 21 (A-10)

A more precise treatment, employing transport equations including the Boltzmann
collision term, but nevertheless averaging v, over the velocity distribution, vields the
expression (A-9) for i, with g given by ({12] p 251 and 348, (13| p 25%)

t #(v)dv is the electron density for speed v

tt Note that, in equation (6 13) of 16], ¥ = (8kT/m)"? (p 52) and In(037kT ) ~ (2'3)In( P*
= (2/3)r/V3) g which results in (A-9)

10




gp = ﬁ In A
T

= —~——In

V3 [ 8 (kT (A-11)
™ Var Zen 12 |

Note that this A differs from that of [4] on page 418 by a factor of one-half.

Alternatively, deducing I, from a comparison of (A-7) and (A-8) in the limit
w>> vy yields a Gaunt factor with a frequency dependence ([6] p 490, [9]). In particular,
we have (cf. [6] p 490)

V3 22KT)
s

T (A-12
’75‘/'26'\/;]— w )

8c =

+ 677 , , o s
where ~ = ¢%%7 == 1.781. The same expression for g is found in {7] (p 148) and (10].

We note that these formulae are essentially classical and apply only to temperatures in
the range (16! p 488, (9], [10])

2, 720
T << 7_)";%_9_ ~ 5x10° forZ — 1. (A-13)

In the opposite extreme, at high temperatures, we have ([6] p 491, {9}”, (10], [14] p 246)

m 7‘hu}

(A-14)

which must be derived from quantum-mechanical considerations. All of these expres-
sions { (A-11) through (A-14) ) are only valid for frequencies in the region in which the
argument of the logarithm is much greater than one.

The variations in the equations for g tend to be the result of the somewhat arbi-
trary cutoffs involved in the classical approximations; nevertheless, their role can provide
physical insight. For example, (9] provides the less precise expression

V'TkT

)
Zew

V3

ge == — In
T

: (A-15)

which reduces to an expression very close to (A-12) if the thermal velocity vy is taken as
(KT 'm)""?. Another approximation is to avoid the frequency dependence by replacing w
with w in (A-12). This leads to

t This can be written v = e"’., where 4* 1s Euler’s constant Care should be taken nasmuch as

some references (cf , [7] ) use the notation v for ~*

tt (9 finds Ag=v1{mkT)"?/hw, which requires a value for the electron thermal velocity vy This

differs from (A-16) by 4/1 781 = 2 25 in the argument of the logarithm if vo = (kT/m)'/?




V3, 22KT)*2  Vm

g = — - e
* m ~¥**Ze*Vm (4me®n )V?
_ V3 (kT)%/*

If 4 is set equal to one, then this matches {A-11) up to replacement of the factor 3/Var
= 0.85 by 0.80 . We have adopted (A-12) in conjunction with (A-1) as the most
rigorously derived under conditions (i) - (iv). Note that (A-16) does not reduce to the
Gaunt factor given by Raizer ({1] equation (6.1)) even though the footnote to that equa-
tion might seem to indicate that should be the case. In fact, if we multiply by 2/3 and
introduce the exponent 3/2 inside the logarithm, Raizer’s expression becomes

V3

¢ y3/2
gq == —.'3. In 8 __(l_\l)__. (1\-]7)
T 3

0 /o
Zs/-ezn}, -

which differs from the various expressions in the exponent of Z as well as the numerical
coeflicients. We do not know whether this expression of Raizer is erroneous; however, it
does yield reasonable results in the region of application. (If T = 15,000 °K and p =
atmospheric pressure, then the electron partial pressure p, is about 10°%/2 dynes/cm? n_
— po/kT = 2.42x 10", and we have g = 2.23 for (A-17) while g = 1.67 from equation
(A-16).) Most likely (A-17) represents an approximation to the Gaunt factor for optical
frequencies inasmuch as, under those circumstances, Ac = 1, and (A-12) is unacceptable.

IMPLICATIONS OF THE SAHA EQUATION

To actually compute g, we need, in addition to values for the temperature and fre-
quency, the ion and electron densities n, and n_. Both of these may be computed from
the pressure under the appropriate thermodynamic assumptions. For a perfect gas in
equilibrium (i.e., T, = T_), we have

psy = n kT
p. = n kT (A-1R)
p =Pp.+PpP.+ Ppn.

where p,, p_, and p, are the partial pressures of the ions, electrons and neutrals. We
still have too many unknowns; however, if we assume total ionization, then p, =0,
n_= Zn,, and (A-8) becomes

167° (2 | ePg Zp:
= = A-193
Hu 3 ( 3 ] m¥2 ¢ (kTY/? o2 ( »)
1/2
_ e o) et z_p’ (A-19h)
3 3 m%2%(kTY/? (1 + Z)* &
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(1 + Z)° (T/10Y)7= W°
3 2
— 016—2 5 E p“““o (A-19d)
(1+2)2 (T/1oY? (hw)?
. 73 R o
== 1.07 x 10" —= & 77 Patm)” - (A-19¢)

(1+ Z)* (T/10%)

More generally, a gas will exist in various stages of ionization. The particle densi-
ties for a monatomic gas may be described by the Saha equation (/4] p 192-207)

: (A-20)

i | 2rn?

m u

32
Nl u(""”[ mkT ] e"l"“" kT
n

where n,, is the number density of ions of charge m, n_is the number density of elec-
trons, u, is the partition function for the m'" ion normalized by the ground state energy
(see (4’ equation (3.43)). and I,, is the ionization energv to remove the m'! electron after
the first m-1 have been removed. The particle densities may be related to the partial
pressures and thence to the total pressure; however, solving the resulting set of equations
even for the case of a gas consisting of a single element can be quite involved. More

specifically, in addition to (A-20), we have

M max
n= Yin,+on (A-21a)
0
Omax
n_= Yimng,. {A-21b)
0

where n is the total number density of particles. Given n. this provides n, + 2 non-
linear equations in the same number of unknowns.

Things simplify considerably when only one level of ionization is present; i.e., when
ny, -- 0 except for one set of adjacent values, m == my and m - mg + 1. (Note that
Z =~ my + 1.) The simplest, and for our purposes most useful, case is when Z =~ 1." Then
mg = 0, so that n,, which by definition is ny, ,), equals n , and ng = n - 2n . In terms
of partial pressures the left-hand side of (A-20) may be written

9
P.p p.-

kTp, KT (p-2p)

Furthermore. if we let x_ =— p_/p and approximate the partition functions by the ground

t A brief treatment of multipte wnmization may be found 0 (4,




state statistical weights g™} we get equation (6.47) of il

2 3,2 5
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(A-22)
g(0)

patm

These expressions may be combined with (A-6) to give a formula for the absorption
coefficient which {assuming conditions (V). (11), (iii). (iv) ) is also valid for weakly ionized
gases:

u, - 1.07x 107 ﬁ)_‘,—l— X_." l)a:im >\2 : {A-23)

Because of the exponential in (A-22), at some temperature depending on 1, the gas
will experience a sudden rise in the electron partial pressure to its asymptotic value.
where x_ == 1,2. More precisely, solving the quadratic x* = a(l - 2x ). where a is given
by the right-hand side of (A-22), we find that fora > - 1 we have x_=1,2. In particu-

(1)
lar, for a = 3, x_.=—0.45. Expressing T in electron volts, letting % =19 (1] p 242),
g

Patm = 1. and taking the logarithm of the right-hand side of {A-22), this translates to

5 I
In(6.7 x 10*) ~ In(1.9) + %ln(l.l()'l Tey) - [%] > In(3) (A-21)

Then, letting 3T,, 1., wefind

5 ~n D -
j‘ Tlnd . 8,(2+ Tlnl,.‘. . ‘\".’),
A suflicient condition is 3< 3, but taking the ionization potential for amr ta be
I, — 144V (1) p 242), we find 3~ 9.7. Thus. a sufficient condition for the complete
single ionization of air is

Teow = (11)e/97 > 1.5eV (A-26)

Note, however, if the temperature rises sufficiently (2 to 3 ¢V ). double ionization will
commence. Thus, within the temperature range 1.5 eV to 2.5 ¢V, and for frequencies
satisfying (hw),, « < 1.5 eV (otherwise we must consider bound-free transitions), we
may use the formulae (A-19} with Z - - 1.




INCLUSION OF BOUND-FREE TRANSITIONS

Formulae for the absorption coeflicient which include the effects of both free-free
and bound-free transitions are derived semiclassically in [4]. As described there (4 p

2606), the results are reasonably accurate in a more (general setting. We note that in their
m+1)}

derivation of {5.34) and also (5.41), a factor of 2 & o t has been replaced by 1 (a rea-
g

sonably good approximation). We reintroduce this factor and an additional factor,
designated £(w), which is simply designed to indicate a quantum-mechanical correction
(When free-free transitions dominate, &w) reduces to the Gaunt factor g See 1. p 241-
242)) Under these circumstances, we may write (4] p 278)

K, - 2: Kom (\-37)
m
where
2gme 2 My, Ym
Kom - a - () (nl - l)- 2 e "F ,"(\') fm(w.) (-\-283)
g 1
and
167 " - N
————— 096 x 107 cm® deg® (A-28D)
3V3 hek?
Ym - lllnl I\T X hae kT (A_gg(.)
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3 forx - v,
\
I'V;v(\) . (A-2%d)
'-?‘\'m"._«,' fHI' N Vi
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Note that v, i~ xp, of 40 The on densities are determmed from (A-20) and (A-21)
The absorption coeflicient g is given by substituting {A-27) i {A-11 which includes the

effects of stimulated emission.

Several observations are in order: First, we note that the inequalities i (A-25d)
should actually read “ << and * > " since the formulae are approximations derjved
under these assumptions [4]. The point at which the two expressions are equal 1s actu-
ally x  In(2y,) ¢ v,,. but this occurs quite close to x v, Second. an assumption
was made in the derivation of (A-28) that the ions may be modeled as hvdrogen-hke
atoms with charges of Z; this may not always be accurate (4 p 275). Also. we remark
that, in the derivation of (A-28), 4] sums the contributions from the free-free transitions

t This really should be the ratio of the 1on partition anctions u™, but it hus been approximated
by the ratin of the statistical weights of the ground states




and the bound-free transitions. Although the expression for the free-free transitions is
only valid for hw << kT, its contribution for hw > kT is negligible. Thus, (A-28)

remains a valid approximation under quite general conditions; i.e., so long as w >> w,

and w >> by,
If we consider the case of single-level ionization with m = 0 (i.e.,, kT << I;) and

frequencies for which hw << I;, then (A-28) reduces to the Kramers-Unsold formula,

1672 €8k g(l) ng T _(1-nwy/kT Hw/kT
L= ek g 1- U/ A-29
M _3\/5 — o(w) 2 ( ] (hw)3 e (1-e ) ( a)
(1) /
— 6.28 x 10°206,(w) 2 ‘g—)‘ n0T3 e I MWKT (1 _ e hu/KT) (A-29b)
g (h “J)ev

Observe that the conditions for the validity of (A-29) may be written
(a) kT <<
(b) hw << 1y,

which is less stringent that (i'). Since Z = m + 1 = 1 and n; n_ = n > we have

p’ Ny

g == a
(kT)® mn_
N X_2p2 Ny
- (kT)* nn.

Using this expression and substituting (A-20) into (A-29), we find

-7

167°€® Tl he kT .

- — -1 A-30a
#e 1\/_ 3 hek [ km ] '3 oA (e ) ( )
0.14 £4(«) " Paim (e KT ). (A-30D)

(T lo‘) 2 (ru)ev

with x_computed via (A-22).

Note that, up to the edge correction e">*/¥T, (A-30b) matches equation (6.46) of [11.
Also, for kw << kT and x 12, (A-30b) reduces to (A-19d) with Z 1. Finally, we
remark that in comparison with (A-29bh), (6.15) of ‘1! seems to be lacking a factor of two.
This occurs even if we set the factor &(w) (which for our purposes is actually close to

two) equal to one.
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